富锂锰基正极材料是否是锂电池突破能量密度
随着消费类电子、电动汽车和储能等领域的迅猛发展,亟需提升以锂离子电池为代表的二次储能设备的能量密度。在锂离子电池中,正极材料是提升锂离子电池能量密度的关键。同样正极材料在锂电池在占据的成本最大,而碳酸锂价格从年初的不到4万一吨飙升至如今的接近60万一吨,高昂的碳酸锂价格已经严重影响到新能源行业的利润和发展。
另外目前已经商业化的正极材料(如钴酸锂、磷酸铁锂和三元正极材料等)的实际容量已经逼近其理论值,难以满足日益增长的市场需求,因此探索新一代具有高能量密度的正极材料是十分迫切的。
锂电池如何突破能量密度的困局
电动汽车是解决能源和环境问题的新型战略产品,但目前电动汽车仍面临续航里程短、成本偏高和安全性有所欠缺等问题,严重制约了电动汽车的大规模推广应用。因而,研究开发新一代-Wh/kg动力锂电池,是未来锂电材料及技术发展的必然趋势。
同时,从目前的技术来看,通过降低电芯中非活性物质的质量比来提高电池的能量密度,几乎已经达到了技术的极限,采用具有更高能量密度的正负极材料是提高电池能量密度更为有效的技术途径。
我们知道,设计电池的第一准则是容量匹配,也就是正负极的容量要匹配。而目前锂离子电池的正极比容量很低,在电池中的质量非常大(1克石墨负极材料要匹配2克以上正极材料);如果用硅碳负极,正极材料的匹配量更大。因此,行业对于新一代高容量正极材料的需求显得尤为迫切。
在已知正极材料中,富锂锰基正极材料放电比容量达毫安时/克以上,几乎是目前已商业化正极材料实际容量的两倍左右;同时这种材料以较便宜的锰元素为主,贵重金属含量少,与常用的钴酸锂和镍钴锰三元系正极材料相比,不仅成本低,而且安全性好。因此,富锂锰基正极材料被视为下一代锂动力电池的理想之选,是锂电池突破瓦时/公斤,甚至瓦时/公斤的技术关键。
富锂正极材料,如富锂锰基正极材料(xLi2MnO3(1–x)LiTMO2,TM=Ni,Mn,Co,等),具有极高的理论比容量(>mAh/g)和可逆比容量(mAh/g),被认为是最有潜力的下一代锂离子电池正极材料之一。其高容量的来源不仅仅是由过渡金属离子组成的氧化还原电对(通常为Ni2+/Ni4+,Co3+/Co4+,少量Mn3+/Mn4+),还有独特的阴离子氧化还原电对(O2-/O-/O2)。此外,富锂锰基正极材料减少了昂贵的钴和镍的用量,有效降低了生产成本。
富锂锰基正极材料具备三大优势。
第一,富锂锰基的过渡金属层含有锂,三元锂等层状材料的过渡金属层没有锂,因此得到“富锂”之名。
第二,结构相当于锰酸锂与层状材料相结合的富锂锰基,以层状金属氧化物的形式呈现,有着高放电比容量的先天优势,其理论数据可以达到mAh/g以上,对比三元锂主流的mAh/g水平优势明显。
第三,富锂锰基材料在电压上具备先天优势,其额定电压为4.5V(最高4.7V-4.8V),而三元锂的额定电压为3.7V(最高4.2V-4.3V)。
综合以上三点,让富锂锰基正极材料很早就成为了新一代正极材料的理想之选。另外,现阶段富锂锰基的原材料中镍与钴的用量远低于三元锂,未来甚至可以做到不含钴,成为无钴电池概念中的另一个电化学路线,成本上相比三元锂正极材料降低40%以上,并且在降低了镍金属用量之后,从根本上保证了电池稳定性及安全性。
富锂锰基动力电池任重道远
虽然富锂锰基正极材料具有放电比容量的绝对优势,但要将其实际应用于锂动力电池,必须解决以下几个关键技术问题:一是降低首次不可逆容量损失;二是提高倍率性能和循环寿命;三是抑制循环过程的电压衰减。目前解决这种材料问题的手段很多:包覆、酸处理、掺杂、预循环、热处理以及液相或气相后处理对富锂锰基材料的电化学性能提升均有一定的作用,但不同的改性方式产生的改善效果会有所不同,目前单一的改性方式仍不能很好地从根本上解决富锂锰基材料所面临的问题,因此有必要采用多种改性方法相结合的方式以及开发新型的结构(如单晶结构、复合结构、组成调控和梯度结构等)解决富锂锰基材料所面临的问题。另外,前驱体的结构和组成设计也非常重要,既要考虑材料容量的发挥,还要重视密度的提升,实现容量和密度之间的“跷跷板”平衡。从下游电池厂和车厂需求来看,无钴化是未来的发展趋势。今年,当升科技发布了新型富锂锰基材料,解决七大关键问题,表现出高的容量和循环稳定性,富锂锰基材料的成功应用还需要开发与之相匹配的稳定电解液体系,上下游同心协力,不断创新、实现共赢。
富锂锰基材料新的曙光
近日中科院青岛生物能源与过程研究所崔光磊研究员带领的固态能源系统技术中心在高比能锂电池正极材料富锂锰基层状氧化物(LLOs)的阴离子氧稳定性调控和锂离子传输异质研究方面取得重要进展。相关成果分别发表在AdvancedEnergyMaterials《先进能源材料》和AngewandteChemieInternationalEdition《德国应化》上。
基于非恒温烧结技术助力LLOs阴离子氧的稳定,实现锂电池的优异循环性能LLOs是一种新型的锂电池正极材料,因兼具阴(O2-)、阳离子(Ni2+、Co3+、Mn3+)的可逆氧化还原反应,具有远高于高电压钴酸锂、高镍三元正极材料的放电比容量(≥mAhg-1),在开发高能量密度锂电池尤其是全固态锂金属电池(能量密度预期超过Whkg-1)时极具应用潜力。目前LLOs由于阴离子氧的氧化还原反应会导致非稳态O2p空穴和O2的产生,严重降低电池稳定性、循环寿命和安全性能,成为制约高比能、高安全固态电池技术发展的瓶颈问题,此外,LLOs材料在全固态电池中性能快速衰减的微观机制尚未探明。因此,发展创新材料制备技术解决其瓶颈问题,探索先进表征技术阐明富锂锰基全固态电池性能衰减微观机制的关键科学问题,是促进LLOs材料发展的重要前提。
为解决上述问题,固态能源系统技术中心提出一种非恒温烧结的新型材料制备技术,实现了LLOs体相晶格氧的稳定化并减少了非稳态O2p空穴的产生。采用该技术制备的正极材料其放电比容量、循环稳定性等电化学性能与传统恒温烧结技术相比,得到显著提升,此外非恒温烧结技术的可行性在无钴富锂锰基正极材料体系(Li1.2Mn0.6Ni0.2O2)也得到了验证(AdvancedEnergyMaterials,),这为实现LLOs材料晶体结构、电化学性能的稳定化提供了重要指导。
同时,该团队基于原位差分相位衬度成像的扫描透射电子显微镜技术(DPC-STEM),首次研究了LLOs在硫化物固态电池中的电化学反应机制,观测到LLOs材料中纳米尺度的两相分离(NCM相和Li2MnO3相)是导致Li+在正极材料体相、界面处存在传输异质的决定因素,并严重限制了富锂相Li2MnO3的容量发挥(AngewandteChemieInternationalEdition,e09626)。该项工作研究了微观晶体结构与锂离子传输动力学、正极材料电化学性能之间的构效关系,揭示了全固态电池中LLOs正极材料性能衰减的微观机制,为精准优化LLOs材料的晶体结构、改善正极/电解质的界面锂离子传输动力学提供了指导。上述工作为开发高能量密度与高安全性的富锂锰基硫化物全固态电池奠定了研究基础。
基于非恒温烧结技术,调控LLOs晶格氧稳定性的工作中,论文第一作者为博士研究生张育涵,通讯作者为崔光磊研究员、马君副研究员、德国马普学会固体化学物理所胡志伟教授和武汉工程大学/太原理工大学张鼎教授。基于原位DPC-STEM技术,揭示LLOs在硫化物全固态电池中性能衰减微观机制的工作中,论文共同第一作者是天津理工大学硕士生刘博文、青岛能源所博士后胡乃方、天津理工大学李超副教授,通讯作者是崔光磊研究员、马君副研究员和李超副教授。上述工作得到国家自然科学基金、中国科学院战略先导项目、中科院青年创新促进会和山东能源研究院等项目的支持。
期待新的技术早日推广放大进入到生产应用环节,带领新能源电池进入一个新的富锂锰基时代。
声明:本文章部分素材图片来源于网络,出于传递更多信息为目的,如若有来源标注错误或侵犯了您的合法权益,请联系我们,我们将及时更正、删除,谢谢。